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Abstract

Intercensal estimates of access to electricity and clean cooking fuels at policy
planning microregions in a country are essential for understanding their evolution
and tracking progress towards Sustainable Development Goals (SDG) 7. Surveys are
prohibitively expensive to get such intercensal microestimates. Existing works, mainly,
focus on electrification rates, make predictions at the coarse spatial granularity, and
generalize poorly to intercensal periods. Limited works focus on estimating clean
cooking fuel access, which is one of the crucial indicators for measuring progress
towards SDG 7. We propose a novel spatio-temporal multi-target Bayesian regression
model that provides accurate intercensal microestimates for household electrification
and clean cooking fuel access by combining multiple types of earth-observation
data, census, and surveys. Our model’s estimates are produced for Senegal for 2020 at
policy planning microregions, and they explain 77% and 86% of variation in regional
aggregates for electrification and clean fuels, respectively, when validated against the
most recent survey. The diagnostic nature of our microestimates reveals a slow
evolution and significant lack of clean cooking fuel access in both urban and rural
areas in Senegal. It underscores the challenge of expanding energy access even in
urban areas owing to their rapid population growth. Owing to the timeliness and
accuracy of our microestimates, they can help plan interventions by local
governments or track the attainment of SDGs when no ground-truth data are
available.

Keywords: Clean energy access; Gaussian processes; Earth-observation data;
Sustainable Development Goals

1 Introduction

Access to energy directly translates into a multitude of factors affecting human develop-
ment that includes education, health, gender equality, clear air and water [1]. Yet, globally
840 million people live without electricity and 3 billion people cook using traditional fu-
els [2]. Even before the COVID-19 crisis, it was projected that around 620 million people
would still lack access to electricity in 2030 with 85% percent of them in Sub-Saharan
Africa and 2.3 billion people would still not have access to clean cooking fuel [3]. The
COVID-19 pandemic threatens the progress that has been made towards the United Na-
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tions Sustainable Development Goal (SDG) 7 on affordable and clean energy access [4].
Access to electrification and clean cooking fuels are the two main indicators instrumental
for measuring progress towards SDG 7, and is the focus of this work. Accurate tracking of
SDG 7 is dependent on frequent and detailed micro-regional data, with special focus on
clean cooking fuel access [5, 6].

Since census and surveys are labor-intensive, cost millions of dollars and involve a lag
of multiple years to get updated results, researchers are studying earth observation (EO)
data owing to its high revisit rate to understand various facets of energy accessibility, grid
structure, supply and demand [7-11]. Most extant works on household energy access have
studied the status of electrification and are limited to coarse spatial granularity of countries
or for sparse villages at continent scale for a single time-point [12—14]. These estimates are
validated for time-points coinciding with surveys, when training and validation data are
readily available. There seems to be scant work in studying the temporal evolution of these
estimates beyond the survey years, paradoxically when these are most needed, except a
study by [7] which reports poor results for electrification access. Therefore, there is an
imminent need for methods that can accurately measure, track and nowcast population
wide energy access during intercensal periods in a cost-effective manner. Nowcasting is
defined as the process of getting intercensal estimates of energy access. Importantly, extant
works on energy access focus on binary variables related to electrification. There seems to
be scant works in understanding the cooking fuel accessibility at microregional scale, as
current studies [15, 16] focus on global and country-wide access of clean cooking fuels.

We propose a novel spatio-temporal multi-target Bayesian regression framework that
reliably nowcasts household energy access for both the lighting and cooking needs, at mi-
croregions using multiple types of publicly available EO datasets, namely nighttime lights,
aerosol optical depth data and Landsat-8 satellite imagery, and census and surveys. We fo-
cus on indicators critical for tracking SDG 7 — access to electrification and clean cooking
fuel for a household. Our model learns the complex relationship between features derived
from EO and energy access targets for the censal year and, also, leverages data from geo-
referenced surveys conducted in subsequent years, to provide reliable nowcasts for inter-
censal periods.

We observe a positive correlation between a household’s access to electricity for light-
ing and liquefied petroleum gas (LPG) for cooking, and a negative correlation between its
electrification and use of lamp for lighting or wood for cooking (see Additional file 1 Fig-
ure 1b). We exploit these correlations among the energy access indicators by formulating
our problem as a multi-target regression, where the goal is to simultaneously learn mul-
tiple targets given a single input observation [17, 18]. Learning multiple targets (outputs)
is shown to be beneficial when the outputs are multi-variate and when complex inter-
dependencies exist among them. In these scenarios, multi-target regression is shown to
provide better predictive performance, robustness to noise and missing data, and compu-
tational efficiency [19].

To facilitate insights into inequities, we model the delineation of energy access along the
urban-rural divide in our Bayesian framework. As a measure of our model’s generaliza-
tion in time, we validate our intercensal microestimates using the temporally closest DHS
surveys.

Our model’s microestimates are produced at policy planning microregions, called com-
munes in Senegal, for intercensal years, 2015, 2017 and 2020, and are validated using con-
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current DHS data.! On average, our nowcasts can explain >77% and >71% of variation in
regional aggregates for electricity and clean cooking fuel access, respectively. For 2020, we
report a Pearson’s r correlation of 0.88 for electricity and 0.92 for clean cooking fuel ac-
cess between our estimates and DHS data. Our results expose stark disparities in energy
attainment for communes delineated along the urban-rural divide as well as juxtaposed
against their population growth. Our model simultaneously quantifies the evolution of all
household energy access indicators in Senegal, e.g., wood, coal and kerosene lamps, thus
providing the policy makers with a complete spectrum of energy accessibility.
In summary, our contributions are as follows:

1 We propose a novel spatio-temporal multi-target Bayesian regression model that
accurately estimates the entire spectrum of household energy access at
microregions using multiple types of publicly available EO datasets in Senegal for
the intercensal periods. Two important distinctions of our model compared to
existing works are as follows: Understanding a multi-spectrum access for household
energy (compared to a mostly binary notion of presence/absence of electricity) by
proposing a multi-target regression model and second, the use of aerosol data for
energy access has not been explored yet.

2 We validate the reliability of the microestimates of our model for several intercensal
years and report highly accurate results at regional levels both for spatial
cross-validation and for intercensal years. For 2020, our model’s errors are
consistently better than the existing best-performing model’s estimates for
electricity and clean cooking fuel access.

3 We demonstrate the significant disparities in energy access for urban and rural
areas, and juxtapose them against the population growth and provide insights for
policy makers into the evolution and the challenges in household energy access in
Senegal. Such insights are possible because we built a specialized kernel that
explicitly models the urban-rural delineation along with spatial and temporal
effects.

4 We model the accessibility of cooking fuel, which is a critical indicator for SDG 7.1
using multiple disparate data sources, and there seems to be scant work in
understanding its access. Lack of clean fuel for cooking disproportionally impacts
women and children, their educational attainment and their indoor air pollution,
and the problem is exacerbated for poorer and vulnerable communities.

A note on definition of energy accessibility Most existing studies have focused on a bi-
nary definition of energy access, i.e., if a household (or village) has access to electricity or
not, by measuring binary responses to questions like, “does the household have electricity
connection?” or “cooking with non-solid fuels?. However, this approach fails to capture
the full spectrum of lighting and cooking fuel access for a household and recent works
calls to move beyond such mono-dimensionality [7]. Hence, we adopt a multi-dimensional
view of energy access at micro-regional level as determined by the census of that coun-
try, thus providing policy makers with more nuanced information about diverse sources
of energy employed by the population for lighting and cooking in their homes. For Sene-
gal, the prominent modes of lighting are candle, electricity, lamp and for cooking are coal,

1Last census for Senegal was done in 2013
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gas, wood. Therefore, rather than a single value, the energy access for a microregion is
defined to be a vector whose length corresponds to the number of prominent categories
of lighting and cooking modes, and each entry contains the fraction of households (in that
microregion) that use that particular category of lighting and cooking.

The rest of the paper is organized as follows: Sect. 2 describes existing works that deal
with estimated energy access using multiple data sets. Section 3 describes details of the
data used in this study and Sect. 4 details the model and the inference procedure. Section 5
describes the validation and results for the target country of Senegal. Section 6 provides
further discussions, including the limitations of this study and future directions.

2 Related works

Extant works on household energy access are, mostly, limited to studying binary notion
of electrification [12—-14, 20] using predominantly nighttime light data and producing es-
timates at a given time point. Most of these works provide promising estimates at time-
points coinciding with surveys, but it is unclear how they will generalize to intercensal
time periods. There are very few studies to determine if the inferential relationships learnt
will be robust over time — a need that has been highlighted by recent surveys on using
satellite imagery for sustainable development [11, 21]. A recent work [7] maps the spatial
heterogeneity of national electricity access from 2014-2019 for the Africa, but yields poor
temporal generalization. While there are longitudinal studies mapping the evolution of
electrification over time, but these are retrospective in nature, rather than a nowcasting
model [12, 22, 23].

The existing models mostly study the binary access to electrification as this metric is
easily interpretable. However, owing to issues of reliability of connection and affordability,
binary metrics may obfuscate the nuanced ways in which households have access to energy
[7].

The existing works to understand energy access from EO data mostly employ general-
ized linear models as these models provide interpretability [7, 22, 24]. Some top perform-
ing machine learning methods for electrification prediction task are gradient boosting
classifiers [25, 26], logistic regression [27], Gaussian Process (GP) classification [12, 27].
We compare our proposed model with each of these existing works.

Besides electrification, researchers have explored different satellite data products, like
Landsat-8, Sentinel data, population data, for predicting developmental indicators, such
as roof types [26], drinking water [14], poverty mapping [28—-30] etc. Recent works [12, 14]
have employed such data sets for electricity infrastructure prediction and household en-
ergy electrification prediction (again a binary notion) at continent wide scale and provide
promising results using deep learning based approaches, based on a convolutional neu-
ral network(CNN). These approaches are not directly applicable for our problem setting,
as they require substantial amounts of training data and we deal with only a handful of
micro-regions for a given country, instead of thousands of villages spread across the en-
tire continent of Africa.

Owing to the better predictive power of CNN-based features extracted from satellite
images over simpler features, we employ the state-of-art deep learning model based on
the ResNet-18 architecture [31], as our choice for feature extraction from satellite imagery.
While researchers have pointed to the tradeoff between performance and interpretability
with deep learning models, by using them as feature extractors in our Bayesian model, we
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weave interpretability into our modeling framework and provide insights useful to policy
planners.

Additionally, most of these works provide estimates at coarse spatial granularity e.g.
for villages spread across the entire African continent [31]. However for SDG monitoring
countries need such estimates at policy-planning level as explored in this work [1]. A criti-
cal challenge, here, remains the unavailability of disaggregated statistical data from census
and surveys.

3 Data

In this section, we describe the EO data sets used in this study, starting with a description
of the target country. We then outline the procedure of extracting the various covariates
from the EO data sets and calculating the energy access targets from census and survey
data sets.

3.1 Country details

The study is conducted for Senegal, a Sub-Saharan country which is categorized with low
human development. According to the 2022 Tracking SDG7 report, Senegal has an elec-
trification access rate of 71% and national access to clean cooking solutions at 31%. It ranks
170 out of 191 countries on the Human Development Index in 2021 [32]. Lack of electricity
supply is one of the main constraints hindering Senegal’s socio-economic development.
The remote and rural areas lack access to modern energy services, face frequent power
cuts that lower the quality of life of the poor and vulnerable communities and reduce
business efficiency [33]. Regarding cooking fuel access, rural areas are highly dependent
on wood, while urban populations mostly use coal and, less frequently, gas.

3.2 Data
The following data sets were used for this study. See Table 1 for details regarding data
procurement, and the details for feature extraction are given below:

1 Census data: We use a 10% sample of the most recent census (called RGPHAE
(Recensement General de la Population de UHabitat de [Agriculture et de I'Elevage)),
provided by Agence Nationale de la Statistique et de la Demographie (ANSD),
which is the National Statistics Office of Senegal. It was conducted in 2013 and was
made available in 2015. The data is evenly sampled across the entire population of
Senegal, with data from 1.4 million individuals, spread across 150,000 households.
It represents the most spatially detailed and comprehensive coverage of national
statistics and has information about household features including mode of lighting
and type of cooking fuel.

2 Demographic and Household survey data (DHS): These surveys collect a multitude
of information across varied topics of interest for a population sample that
participates in the DHS program. These are based on sampling clusters, which
collect information for individuals or household records. For privacy reasons,
cluster locations are displaced up to 2 km for urban areas and up to 5 km for rural
areas, about 1% of which can be displaced up to 10 km [34]. The cluster locations
for DHS corresponding to 2015, 2017 and 2019 are shown in Additional file 1 Fig. 1.

3 Nighttime lights (NTL) capture the radiance associated with lights at night and is
often used in studying electrification access at various spatial heterogeneity
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Table 1 Description of disparate data sets used in the study. The first two rows corresponding to

census

and survey data are used to create targets for our model. The next three rows, NTL, AOD and

L8 are EO datasets used to extract covariates. The last row corresponding to population data is used

in getti

ng settlement information and is used in weighting the covariates of EO features.

DMSP/OLS/VIIRS refers to the Defense Meteorological Satellite Program/Operational Linescan System
(OLS) and the Visible Infrared Imaging Radiometer Suite (VIIRS)

Datasets & Frequency Source Raw Details Cost for data
resolution of covariates collection &
availability per pixel per preparation
year
Targets
Senegal Census Every 10 National Statistics NA Energy access $$$ (USD 29 million)
years Office of Senegal indicators
(ANSD)
DHS Survey 2-5years  United States Agency NA Energy access $$ (but publicly
Data for International indicators available)
Development
(USAID)
EO Data
Harmonized Monthly Harmonized Mean NTL NTL data Low/no cost (data
Night-time Nightlight Dataset averaged DMSP/OLS/VIIRS exhaust)
Lights (NTL) [38] annually
(1 km/pixel
resolution)
Aerosol Optical  Monthly ~ Google Earth Engine  Median AOD  Blue band (0.47 um)  Low/no cost(data
Depth (AOD) averaged AOD over land exhaust)
(1 km/pixel annually
resolution)
Landsat-8 Monthly ~ Google Earth Engine 512 length  Bands - Red, Green, ~ Low/no cost (data
multi- vector Blue, Near Infrared exhaust)
spectral extracted (NIR), Shortwave
imagery (L8) using a deep Infrared 1 &2
(30 m/pixel neural (SWIR1/2), Thermal
resolution) network [31] (TEMP1)
Human
settlement
Population Yearly WorldPop [39] NA High resolution $$ (but publicly
estimates gridded population  available)
(100 m/pixel
resolution)

[10, 35-37]. We use an integrated publicly available NTL dataset across the years
[38].

4 Aerosol Optical Depth (AOD) is extracted from the Moderate Resolution Imaging

Spectroradiometer (MODIS) on NASA’s Terra and Aqua satellites, and captures the
aerosol content over a spatial location. A median composite of the annual AOD

data is taken to mitigate the effect of seasonal dust storms.

5 Landsat-8 satellite data: This data has been shown to predict infrastructural

qualities, especially those related to electrification [14] in Africa, when compared to
nightlights and Sentinel 1 satellite data. To extract features from this data, we
employed a pretrained deep neural network, based on ResNet-18 architecture and
adapted for multispectral satellite imagery. This model has been shown to
outperform other models in extracting features to predict asset wealth (that
includes household indicators including electrification and possession of assets like
television, phone, etc.) [31]. We use the intermediate activations from the
penultimate layer in the deep neural network as features that, likely, correspond to

Page 6 of 22
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information related to urban infrastructure, agricultural land and other land forms
(like desert and water bodies). We use 1-year median composite images for Senegal.
The input to the deep neural network is the 7 band image of size (224 x 224) and
the output is a 512 length vector corresponding to the activations from the
penultimate layer. The composite Landsat-8 image, in which each pixel corresponds
to a 30 sq. m. area on ground, is divided into “tiles” of size (224 x 224), each
corresponding to an area of 6.72 sq. km. Each tile is fed into the deep neural

network and transformed into a 512 length feature vector.

3.3 Creating microregional covariates from EO data
The raw covariates for each of NTL, AOD and L8 data sets listed in Table 1 are aggre-
gated to microregions, using a population weighted aggregation scheme to capture the per-
household behavior in that microregion, which is empirically shown to provide better per-
formance in estimating household energy access compared to extant works. Our scheme
is outlined here. Note that for each EO data set, the geographical area corresponding to
each pixel is different.

The covariates from EO data are extracted at the granularity of pixels, while our analysis
is performed at policy planning microregions. Spatially, a microregion is composed of a
number of pixels. While some pixels lie entirely within the spatial extents of a microre-
gion, others may fall at its boundary with neighboring microregions. We follow a specific
aggregation scheme to get the EO covariates for a microregion, outlined below.

For each EO covariate (f), we calculate the weighted mean s, and weighted variance af%
for a given microregion, ¢, as follows:

Ji X Dic
e = Z‘flfi_p, 1)
> viDic
9 -
(f; — X D;
O_fi _ Zvl(f Hf]:c) ch, (2)
Zvl‘pic

where f; corresponds to the covariates for a pixel (indexed by i). p;. is an area-adjusted
population of the pixel, calculated as p;, = pi‘;—if, where p; is the population for the pixel, 4;
is the geographical area of the pixel and a;, is the geographical area of the pixel contained
within the microregion c. Note that p;. is O for pixels that do not have any overlap with
microregion c¢. The population count, p;, is obtained by resampling the gridded population
data to the appropriate spatial resolution for the feature f.

While the numerator in (1) weights the EO covariates for pixels by underlying popu-
lation, dividing it by the total population of the microregion, ensures that the features
capture the per-household behavior for that microregion. We also estimate the variance
corresponding to each aggregated EO covariates for a microregion as given in (2). It cap-
tures the noise that is attributed when EO covariates are aggregated to microregions.

Finally, there are 2 covariates corresponding to mean and variance of NTL and 2 for
AOD. For the Landsat-8 high dimensional feature vector, we use Principal Component
Analysis (PCA) to reduce them to 20 covariates by mapping the data to the top 20 prin-
cipal components that retains 95% of the data variance. Dimensionality reduction is often
done for computational efficiency and to prevent overfitting in small datasets. The corre-
sponding variances associated with each of these features is mapped in the same manner,
giving 40 covariates (mean and variances) from L8 imagery.
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3.4 Creating energy access targets from census and DHS data

Energy access targets from census In Senegal’s 2013 census, the major categories for light-
ing, in order of popularity, are electricity, rechargeable lamp, candles and others; while
those for cooking fuel are wood, coal, gas and others. Each household identifies as using
a specific category of lighting and cooking fuel. We create an 8 length accessibility vector
for each microregion corresponding to 4 categories each of lighting and cooking fuel. The
exact mapping of each census response to this vector is detailed in Additional file 1 Section
“Mapping of census responses” Each entry in the vector contains the fraction of house-
holds using that particular category of lighting/cooking fuel within the microregion. The
household responses are weighted by their sampling coefficients provided in the census
to make them representative of the population.

Energy targets from DHS DHS data occur for select clusters throughout the country,
whose locations change for every new survey. For each DHS survey, the geocoded clus-
ters are assigned to their spatially nearest microregion and a 8 length accessibility vector is
created by consolidating the household responses related to lighting and cooking fuel ac-
cess for all clusters that fall within that microregion, using the similar approach described
for census above. We weight these responses using the provided sampling weights to ac-
count for the selection biases.

4 Model description
This section describes the proposed Bayesian model, and details on model training and
inference. Since Gaussian Processes (GP) form the basis of our model, a brief background

is provided.

4.1 Model intuition

We propose a semi-parametric model given as: y = Bx + f(x,s,u,t) + €. The first term
models the linear relationship between EO covariates (x) and the targets (y), where B is
the coefficient matrix for the linear model. The multiple targets of regression correspond
to household energy access indicators (e.g., electricity, gas etc.) The second term employs
anon-linear functional mapping based on GP between an augmented covariate vector and
y. The augmented covariate vector includes x, the spatio-temporal coordinates (s, ), and
an urban-rural indicator ().

GPs belong to the class of Bayesian models, where the choice of kernel functions enables
one to learn highly nonlinear relationships between the covariates and target variables
[40]. GPs can be made more flexible and interpretable by combining (adding or multi-
plying or convolving) different kernels, where each kernel models a certain effect within
individual covariates.

We propose a specialized kernel for our GP model, with the following form:

Kpo =K+ (Kgp xKp) + KO Kp 3)
——
covariate effect multi-target
effect

The first kernel in (3) models three types of effects in an additive form: a EO covariate
effect K., a spatial auto-correlation effect with urban-rural delineation K, * K, which
assigns more weight to spatially proximal and similar microregions (i.e. in EO data, an
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urban location might derive some similarity from nearby rural locations and also from
nearby other urban locations), and a temporal recency effect which assigns more weight
to recent observations K;. The second kernel K, provides the multi-target formalism by
exploiting correlations across different targets.

The rationale for using such specialized kernel is that additive kernels are known to
extrapolate well to unseen test data [41, 42], and we empirically demonstrate better per-
formance of our model compared to existing works.

Model training involves estimating the optimal values for the coefficient matrix, B, and
the hyper-parameters associated with the kernel K,,, in (3), and is done by maximizing
the marginalized log-likelihood of the training data. Elastic-net regularization is employed
on the linear model to prevent learning from spurious features and to avoid overfitting on
limited training data [43]. We perform out of sample spatial and temporal validation to
test our model’s generalizability.

4.2 Model details

Notation For a given microregion, indexed by ¢, the covariate vector, target vector, spatial
coordinates, and the urban-rural indicator, are denoted by xﬁc), yEC), s, and u'9, respec-
tively, and are collectively denoted as zf). Note that the covariate vectors and target vectors
are also indexed by time ¢, denoting the corresponding years. Each individual target will be
denoted by y%). For notational simplicity, we will drop the superscript c to denote a typical
microregion, unless needed. In general, we will use a lower-case bold symbol to denote a
vector, upper-case bold symbol to denote a matrix, and a lower-case normal symbol to de-
note a scalar value. Collections (or sets) of entities will denoted using calligraphic symbols,
e.g., X, V. The oth entry of a vector, e.g., x, will be denoted as x,.

4.2.1 Model description
The proposed semi-parametric model is written as:

Ye = Bx; + f(x;, 8,14, 1) + €, (4)

where B is the coefficient matrix for the linear component and € denotes the unexplained
noise and is modeled as a zero-mean Gaussian random variable, i.e., ¢ ~ N(O, 03). The
function f() captures the non-linear dependencies between the covariates and the residual
vector, §;, where §; = (y; — Bx;), and is modeled using a Gaussian Process.

Background on Gaussian Processes (GP) GP is a Bayesian formulation to learn non-
parametric, non-linear functions, through the use of kernels. A GP allows placing a
stochastic prior on the function f(z;), where z, = (x;,s, u,t). The GP prior is completely
specified by a mean function, m(-), and a positive-definite kernel function (-, -). The mean
function represents the expected value of f(), i.e., m(z;) = E[f(z)], and is often set to 0, i.e.,
m(z;) = 0. The kernel function defines the covariance between any two realizations of f(),

ie.,

k(zo2) = E[f 2/ (z))] (5)

assuming a zero mean function.
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The definition of GP specifies that for any finite collection of inputs, Z = (z;}, 2., ..., ;")
the vector of function values, f(Z) = (f(z;)),f(z.2), ..., f(z;")), follow a multivariate Gaus-

sian distribution, i.e.,
f(Z) ~ N(Or I<Z,Z)r (6)
where Kz z is a (n x 1) covariance matrix, such that the ijth entry is equal to k(zz, zZ).
For a single output, indexed by o, a GP regression model (GPR) can be defined by as-
suming that the targets are modeled as:

8, ~N(£(2),0.1), 7)

where L is the (# x n) identity matrix. Using (6) and (7), one can marginalize out f(Z), such
that:

P(8.12) = f p(8,16(2)p(E(2)) df

(8)
=N(0,Kz,z +0.1).
4.2.2 Choice of kernel function
Our kernel function is formulated as follows:
k(2 z,) = ky (xilo ) + (kop (5, 87) ¢ e (%)) + bt ), (9)

where k¢, kp, k,r and k; denote the kernels that capture the similarity in covariates, spatial
autocorrelation, urban-rural delineation and temporal recency. We use squared exponen-
tial kernel function for &y, kg, and k;, which is the most widely used kernel function be-
cause of its ability to learn smooth non-linear functional relationships [40]. The individual
kernel specifications are given as follows:

6 oy o it = |1

kf(xtl,,xtl,) = (Tf exXp —T ’ (10)
f

e I — 9>

ksP (scli SC]) = Usia exp (_W ’ (11)
(i - 4)*
ke(ti, ) = atz exp (—# . (12)
¢

The urban-rural delineation is modeled by &, which is specified as the following categor-
ical kernel:,

o 1 ifus = uY,
Kur (ucl) MC/) = (13)
0 otherwise.

The scalars oy, £y, 0, £y, 04, £, are the hyper-parameters of the kernel functions and are

estimated from the data, as described later.
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Feature selection To perform feature selection on EO data, we employ Automatic Rele-
vance Determination kernel (ARD) on our model. ARD kernels are effective in selecting
a smaller explanatory subset of features from a large set of irrelevant features by regular-
izing the solution space using a data-dependent prior [44]. Note that the feature kernel
in (10) uses a single global characteristic length scale (£;). However, for ARD each feature
has a different characteristic length scale, denoted by £ for the rth feature. The feature
kernel for ARD is given as:

¢ G 1, . ¢ e ¢ .
kf(xt:’xt;) =0} exp(—i( . —xt;)TP L —xé)), P =diag({s1,£r2,...). (14)

The inverse of the length scales of each feature, i.e., i, is used a proxy for feature relevance
[40].

4.2.3 Handling multiple targets

The GP regression model described above can only handle a single target. Since the prob-
lem studied in this paper involves multiple targets, we present the following scheme,
adopted from [45], to exploit the correlations among the targets in the regression model. In
this formulation, each instance consisting of a covariate vector and m length target vector
is converted into m instances with a scalar target value. We introduce an additional dis-
crete covariate, ¢, which corresponds to the index of the target. For example, a covariate

and a m length target vector pair given as (zgc); 69) is transformed into m pairs as follows:

(2, 1);8%),

Do @289,
(29569 = { (15)

(2", m); 83).

Note that the target is transformed into a scalar. We denote the augmented covariate

vector as zﬁg) = (sz), 0). The extra covariate is handled by multiplying the kernel function,

k(), in (9) with a target-specific kernel function, k,(), to obtain the final kernel function:
/2(22,22) = k(zg,zg) x k¢(0;,0)). (16)

Note that the resulting covariance matrix for an augmented single-target data set can be

expressed as:
KZ_,Z =Kz z ®K,, (17)

where ® denotes the Kronecker product between the (n x n) covariance matrix, Kz =
and the (m x m) matrix K, such that k(0;,0;) = K¢[0;,0]. For GP, K3 5 needs to be a
positive-definite, which means that K, should also be positive-definite.

The m? entries in K, can be thought of as the hyper-parameters of the kernel function
in (16) and can be learnt from the training data. However, instead of treating each entry as

a hyper-parameter, we consider a parameterization of K, using fewer hyper-parameters.
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In particular, we consider a spherical parameterization [46] of K, given as follows:
K, =S'S, (18)
where S is an upper triangular matrix of size (m x m), whose oth column contains the

spherical coordinates in R of a point on the hypersphere, R®~Y, followed by (7 —0) zeros.
For example, for m = 4:

1 cos¢® cosp® cos p@

S- 0 sing®  sing® cosp® sing™® cos ¢ 19)
0 0 sing®@ sing®  sin¢™® sinp® cos ¢©
0 0 0 sin @™ sin ¢® sin ¢(©®

Here, (,b(l) , qb(l), ... are the hyper-parameters that parameterize the matrix S. For m targets,

@ hyper-parameters to specify S. The spherical parameterization
has three advantages. First, it allows us to parameterize a (m x m) matrix using only @

hyper-parameters. Second, it ensures that the resulting matrix Ky is positive-definite. And

one would require

finally, the off-diagonal entries of K, encode the correlation among the targets and can be
interpreted as such after training the model.

4.2.4 Model training

The parameters of the proposed model consist of the coefficient matrix for the linear
model, B, the variance term for the observational likelihood in (7), o, the kernel hyper-
parameters, £y, of, Ly, O, £1, 0y (see (10), (11), (12)), and the spherical coordinates in the
upper-triangular entries of S.

We assume that the training data consists of # instances, Z = (zﬁfl) , zgz), e zgi”)), where

each zgfi) = (ng"), s¢), 4, ¢,), and the corresponding targets ) = (yif‘),ygz), e ,y§;") ). The
linear coefficient matrix B is first estimated using a regularized least squares estimation

procedure, with the loss function defined as:
1
J(B) = ——IIY = XBI; + A Bz + (1~ 2)|BJ, (20)

where || - |2 and | - | denote the square of the Frobenius norm and the /; norm of a
matrix, respectively. X is the covariate matrix consisting of the covariate vectors, i.e.,
X = (%, x{%)T, and Y is the target matrix consisting of the target vectors, ie.,
Y= (ygl),ygw, . ..,yifl”))T. While the first term in (20) is the standard least squares loss,
the second and third terms act as an elastic-net regularizer on the coefficients, which is
employed to reduce the impact of spurious features and to avoid overfitting [47], where
a model performs well for in-sample data, but does poorly for out-of-sample points. The
scalars o and A are known as the regularization parameters and are tuned using cross-
validation on the training data. In this study, the tuned values for « and X are 0.1 and
0.5, respectively. The optimization of the loss function in (20) is done using a coordinate
descent algorithm.

After estimating the optimal coefficients in B, the hyperparameters associated with the
GP are estimated by maximizing the marginal log-likelihood of the residuals, using the
marginal likelihood in (8). For each training instance, the residual vector is defined as
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SEfi) = yg") - BTXE?). Let Z denote the training data set in which every training instance is
augmented according to (15). Let & be the vector containing all the scalar targets. Given
that the marginalized conditional probability distribution, (8| Z) is a multivariate Gaussian
with zero mean and covariance as (Kz z + 031 ) (see (8)), the marginalized log-likelihood

can be expressed as:

_ 1- 1=
logp(3|2) = — 55T(1<2;,Z— +021)7'3
(21)

1 2 nm
- 510g|(1(2,3 +ol)| - - log27.

The marginalized log-likelihood is maximized with respect to the kernel hyperparameters
and o, using stochastic gradient descent [48].

4.2.5 Model inference

To infer any target for a microregion at a new time instance, we use the GP formulation
to estimate the posterior distribution for the target, conditioned on the training data set,
(Z,))). Let the covariates for the test instance be denoted as z, = (X, S, U, t). For the oth
target, the posterior distribution of y,, is a Gaussian distribution, whose mean, ¥,,, and
variance, var[y,,] are given by the following expressions [40]:

Feo = bl %, + k] (K5 5 +021) 7', (22)

-1
var[y,o] = ke — k| (Kzz+ anzl) k, + 02, (23)
where b, corresponds to the oth column of the coefficient matrix, B. The vector k, con-
tains the kernel function evaluation between every augmented training instance and the
test instance, and the scalar k., is the kernel function evaluation for the test instance with
itself.

5 Results

We describe two sets of experimental results: first, validation results for spatial and
temporal generalizability, and second, insights provided by our model. We also provide
through comparison of our model’s performance with the class models, namely linear,
Gaussian Process Regression (GPR) and Gradient Boosted Regression (GBR). While none
of the previous works have used the all the datasets as described here, for the comparison,
here, we use our feature set and their models. Regarding the insights, we provide three
details: energy access estimates for 2020 for the entire country; energy access delineated
by urban-rural divide and juxtaposed against the population growth

5.1 Validation results
Spatial cross-validation During each run of spatial cross-validation, the training and test
sets are sampled from geographically distinct regions to mitigate the effect of spatial auto
correlation and this procedure is shown to produce robust results [49]. The specific strat-
egy for Senegal used in this study is described in [28], and ensures that during the multiple
runs of CV, all microregions are represented in training and test samples.

Table 2(a) depicts the results of spatial cross-validation procedure performed for cen-
sal year (2013) and emphasizes the efficacy of our model in predicting energy access at
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Table 2 (a) Spatially cross validated (CV) results for energy access at microregions for 2013 and
comparison with existing works. (b) Temporally validated nowcasts for 2020 with DHS-2019 data
aggregated at regions and comparison with existing works. Corr. refers to Pearson’s r correlation, Rank
corr. refers to Spearman'’s rank correlation and RMSE refers to Root Mean Square Error, which is
disaggregated by urban and rural areas. The target values are normalized between 0 and 1. The
p-values for all targets is less than 0.001, unless annotated with a *. RMSE is in same units as the
target, with lower values indicating a better fit. The columns highlighted Linear (EO) and Linear (NL)
are comparative methods, where the former denotes a linear model with our covariates and the later
denotes a linear model with only nighttime lights data. Results for past approaches on all covariates
are reported in columns GPR (Gaussian Process Regression [12]) and GBR (Gradient Boosted
Regression [25]). Spatial CV procedure was performed 100 times with different train-test split of the
data, the standard deviation across the multiple runs is reported within simple brackets. In temporal
validation, the testing data belonged to 2020 and the training data to 2013, 2015, and 2017. Since
this procedure was run a single time, there are no standard deviations to be reported

Electricity access Clean cooking fuel access
This Linear  Linear  GPR GBR This Linear  Linear  GPR GBR
study (EO) (NL (EO) (EO) study (EO) (NL (EO) (EO)
only) only)
(a) Spatial validation
Corr. 0.81 0.65 0.67 0.55* 0.79 0.74 0.71 0.74 0.33* 0.72
(0.11) 0.12) (0.09) (0.32) (0.08) (0.23) 0.21) (0.16) (0.37) (0.15)
Rank corr. 0.74 0.57 0.65 035 0.71 0.60 0.49 0.62 -0.05 0.61
(0.13)  (0.19) (0.17) (0.56) 0.11) (0.26) (0.21) (0.18) (0.56) (0.20)
RMSE 0.22 0.46 048 044 0.27 032 0.24 0.30 0.37 032
(urban) ~ (0.05)  (0.21) (0.18) 0.21) (0.05) (0.13) (0.08) (0.11) (0.18) (0.13)
RMSE 0.20 0.26 0.19 022 0.18 0.08 0.08 0.08 0.07 0.07
(rural) (0.03) (0.06) (0.03) (0.06) (0.02)  (0.01) (0.02) (0.01) (0.01)  (0.01)
(b) Temporal validation
Corr. 0.88 0.72 0.48* 0.81 0.88 0.92 0.75 0.76 0.79 0.65
Rankcorr.  0.83 0.77 0.74 0.74 0.85 0.93 0.81 0.84 0.80 0.77
RMSE 0.23 043 046 033 0.21 0.17 0.18 0.16 0.16 0.17
(urban)
RMSE 0.15 0.24 0.19 0.22 0.16 0.30 0.13 0.12 0.15 0.31
(rural)

microregions with highly significant correlations and low errors when compared to com-
peting methods. Spearman’s correlation of > 0.6 indicates that rank correlations are pre-
served, which is important as the correct ordering of microregions is, at times, sufficient
to identify the most deprived ones. The values of Pearson’s r correlation are much higher
than rank correlation indicating the linear correspondence of the targets and model es-
timates. Our model predicts electricity access better than gas access. However we notice
low RMSE errors in gas access for rural microregions than urban ones. Detailed results for
all energy indicators are given in Additional file 1 Table 2.

Temporal validation We test the validity of our nowcasts by using the concurrent DHS
survey. For country-wide spatial coverage, this validation is performed at regional level.
The geocoded clusters from DHS are assigned to their respective regions (this mapping
is already provided in DHS data). Our nowcasts are also aggregated to region level for
comparison and r-squares are reported. To nowcast for 2020, our model is trained on EO
data and targets for censal year (2013), as well as EO data for the years when subsequent
DHS surveys are available, which are 2015 and 2017 for Senegal. Figure 1 shows that our
model can explain 77% and 86% of the variation in the regional aggregates for electric and

gas access, respectively.
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Figure 1 Scatter plots of temporal validation of nowcasts for 2020 with DHS derived data for 2019 for energy
access at regions. Our model predictions are produced at microregions, but aggregated to regions for
comparison. Targets from DHS clusters are assigned to their regions as well

Table 2(b) shows high Pearson’s r and rank correlations for both electric and gas access
for temporal validation. The errors are also lower for rural areas, than urban ones. We also
experiment for intercensal years, 2015 and 2017, whose estimates are validated with the
DHS derived indices concurrent to those years. The details of the experimental setup and
scatter plots in each case are given in Additional file 1 Table 1 and Additional file 1 Fig. 2
respectively. For both these years, we report a r-squared of >0.78 and >0.71 for electricity
and gas access, respectively. These results state the accuracy of nowcasting abilities of
our model for data-scarce situations. Our study also provides accurate nowcasts for other
prominent modes of lighting and cooking, namely wood, coal and lamp, see Additional
file 1 Table 3, which could help policy makers to target appropriate interventions.

Focusing on our model’s errors for 2020 for electrification access, we see that our model
marginally underpredicts the electricity access for most regions irrespective of these re-
gions being urban/rural or with high/low electricity access. The most underpredicted re-
gions for electricity access are Kolda and Kaffrine. Doing a similar error analysis for clean
cooking fuel access, we again note that our model marginally underpredicts for most re-
gions irrespective of their urban/rural status. The urban microregions of Saint Louis, Kao-
lack, Thies, Louga, Fatick and rural areas of Dakar are the most underpredicted, while the
urban areas of Dakar are slightly overpredicted. We would like to note that these results
are data dependent, with various factors affecting the model performance with promi-
nent ones being the noise in the EO data that is input to our model, and the quality of the
surveys (temporal and spatial coverage).

5.2 Insights into model’s intercensal estimates

Estimates of electricity and clean cooking fuel access for microregions in Senegal in 2020
Our model’s estimates for 2020 are depicted in Fig. 2.2 In 2013, about 57% of households
were electrified, which were mostly concentrated in the capital region of Dakar and the
nearby urban area of Thies. Compared to 7% in 2013, about 11% of all rural microregions
have more than half of their households electrified in 2020. The number of electrified
households in urban microregions has remained the same (which amounts to about more
than 85% of those microregions), even while accounting for rapid population growth in
these areas.

2Here, clean cooking fuel refers to use of liquefied petroleum gas or electricity used for cooking at household level, and is,
henceforth, referred as gas in our paper.
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Figure 2 Quantifying the evolution of household energy access from 2013 to 2020 for 552 communes in
Senegal. (@) Electricity access in 2013 using census (b) Nowcasted electricity access in 2020 (c) Clean cooking
fuel access in 2013 using census (d) Nowcasted clean cooking fuel access in 2020 (e) Changes in household
electricity access from 2013 to 2020. (e) Changes in household clean cooking fuel access from 2013 to 2020.
Administratively, Senegal is organized into 14 regions and 45 departments. The finest level of policy planning
is communes. From the 2013 census, it has 384 rural communes and 168 urban communes (which includes
121 urban centers). Dakar region is shown enlarged in the inset. Urban centers are shown as dots on the map

The change in electrification between these years is depicted in Fig. 2(e). While, several
rural areas in Kedougou and Sedhiou report positive change, it seems that electrification
in some urban areas in Dakar has not kept up in 2020. We attribute it, mainly, to rapid
growth of urban population in recent years, causing the electrification rate to lag or stay
stagnant (further results are detailed below).

Focusing on gas access in Fig. 2(c), (d), (f), we notice that it was concentrated only in
the urban regions of Dakar in 2013. Nationally, 67% of the households had no access to
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Figure 3 Disparity in energy access disaggregated along the urban-rural divide. Each violin plot shows the
distribution of energy access for microregions for 2013, 2015, 2017 and 2020. Red denotes urban and blue
denotes rural microregions

clean cooking fuels in 2013. The 2020 nowcasts show that gas access is slowly spreading to
other urban centers in the country. Focusing on the urban regions, we find that about 47%
of these areas have more than a quarter of their households with gas access. However, the
picture looks dismal in rural microregions. Even in 2020 most of them have more than 75%
of their households without access to clean cooking fuel. Figure 2(f) depicts this change
and highlights the disparity between urban and rural areas, which is described in detail

below.

Highlighting the urban-rural disparity in energy access Dis-aggregated energy access
along urban-rural divide from 2013-2020 is depicted in Fig. 3, where wide heterogene-
ity becomes evident not only between urban-rural microregions, but also within each of
the urban (or rural) categories. Urban areas usually exhibit much wider energy inequities,
with some of them having lower household electrification than select rural ones. How-
ever, on average, urban areas have markedly higher access to electricity than rural areas
through the years. Our model reveals stark disparities in energy disparities even in 2020.

The spread of gas accessibility has a wider disparity among urban areas in 2013, with very
few areas (mostly in Dakar) boasting high access to gas, while rural areas had hardly any
access. It corroborates with national numbers which allocate very few households with the
income to purchase clean stoves to burn gas and the recurring purchase of gas cylinders, as
well as the lack of distribution outlets in far-flung rural areas [50, 51]. Our analysis reveals

a very marginal increase in the gas access in rural areas in 2020.

Analyzing the dynamics of energy access and population growth Most urban and rural
areas report a positive change in electrification at regional level, see Fig. 4(c), despite their
population growth, which puts Senegal in an optimistic growth curve. Contrasting the
regional plots with micro-regional ones elucidates the point that several heterogenieties
are lost when data is aggregated to sub-national levels. For microregions, we notice that
urban areas have a broader horizontal spread, in both electricity and gas access, highlight-
ing the existence of disparities within these areas, even with similar percentage population
growth.

Figure 4(b) depicts that urban microregions show a negative percentage point change

in gas access, highlighting that it has not kept up with population growth in urban areas.
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Figure 4 Changes in access to electricity and clean cooking fuels (in percentage point) related to population
change (in percentage) from 2013-2020 at microregions (shown in (a) for electricity and (b) for clean cooking
fuel) and aggregated to regions (shown in (c) for electricity and (d) for clean cooking fuel). Red points denote
urban and blue for rural. Size of the circles denote their population. These plots highlight hot-spots where the
rate of energy access has not kept up with its population growth

Most rural areas show a positive percentage point change in energy access highlighting
that gas access is beginning to pick up in these areas even with the increased population
growth. Note that most of the rural areas had no access to gas as cooking fuel in 2013, and

thus they exhibit marked percentage point change in Figs. 4(c) and (d).

6 Discussion, limitations and conclusions

The objective of our EO-data based modeling approach is to provide microestimates when
surveys are unavailable, e.g. during intercensal periods or in regions of conflict or those
recovering from natural disasters or political upheaval and, thus, to augment the existing
surveying efforts on the ground.

The basic premise of using heterogeneous satellite data is the assumption that they can
capture the heterogenieties in energy access on the ground, possibly via nighttime lumi-
nosity data or urban-buildup. To identify which input features are most useful, we perform

feature selection using ARD kernel, and the top features deemed important are, indeed,
nighttime lights, selected Landsat-8 features and aerosol data, as shown in Fig. 5.

Visualizations of the features extracted using Landsat-8 imagery point to semantically

meaningful ones, likely capturing urban areas, sparse rural settlements, agricultural and

presence of water, shown in Fig. 6. Though these selected features are specific to the EO



Pokhriyal et al. EPJ Data Science (2022) 11:60 Page 19 of 22

g
o c10
5
2
83 s
T E
0 I__l___ ________ I ________________________ -
HANNSTNONROOOANMNMINONODNOANMITINONVOOANMINONODONO CC Sk
L D B R e R e K R A N N P PP P R R R R R R R R R
R R N B N N U U DO U U - R P O R Rl
——————————— S EEEEEEEEREREESD
B o e D = S
I T T T, X T T, B B W R o
©

Features

Figure 5 Feature relevance obtained using Automatic Relevance Determination (ARD) kernel, which is often
used for this task in GPs, where the inverse length scale parameter of each input variable is used as a proxy for
feature relevance [40]. n/ refers to nighttime lights, aod refers to aerosol optical depth and /s refers to landsat
features

(c) (d)

Figure 6 Visualizing the maximally activating Landsat images for four selected features extracted by the deep
neural network. Each pair in each sub-figure shows the original Landsat image (top) and the corresponding
activation map for a given feature (bottom). The four selected features appear to correspond to presence of (a)
dense urban areas, (b) sparse rural areas, (c) agricultural land, and, (d) water bodies. See Additional file 1
Section “Visualization of Deep Neural Network Features” for more details

data and country analyzed here, they conform to the broader consensus of existing re-
search with nightlights as the most important feature [10, 35-37].

Our model leverages EO and DHS data for all past years when available. This involves
allocating yearly DHS clusters to nearest microregions. Our allocation mechanism is ro-
bust to the inherent noise in spatial locations of DHS clusters, whose geo-coordinates are
moved to protect privacy (clusters in urban areas are moved by up to 2 km and those in ru-
ral by 10 km). Contrasting, most existing works rely on extracting satellite imagery (which
is usually at 30 sq. m resolution) around the DHS clusters and are, thus, susceptible to
learning from noisy or misaligned data [7, 14, 31].

Validation at intercensal microestimates and nowcasts remain a challenge, given the lack
of fine-grained ground truth data. We mitigated it by providing validation of our nowcasts
at regional level using temporally closest DHS data. The next census of Senegal (likely
scheduled for 2023) or more local data will likely provide a good validation point.
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Regarding the generalizability of our model to other countries, we do believe that our
methodology can be replicated to our countries, given the availability of their EO data and
targets for training purposes (so that the model will learn country-specific relationships).
We understand that significant gaps in both temporal and spatial coverage of surveys do
exist for many countries, however our methodology is not dependent on availability of
surveys with uniform temporal regularity and spatial coverage. Our model can be trained
with the existing survey data and EO data for a country to nowcast. The kernel function,
that lies at the core of our modeling approach, is designed to appropriately weight the
temporal and spatial information in the surveys (i.e., more weight to more recent survey
data).

Another research avenue that is worth exploring regarding generalizability is how well
does our model that is trained on one country, perform for another country, especially
neighboring countries.

Limitations There are limitations to employing nighttime light data to accurately mea-
sure aspects of human development, including access to electrification, which was pre-
dicted less successfully for some countries than others, as shown in [52]. Researchers
have highlighted the limitations of existing models that learn solely from nighttime im-
agery, particularly their tendency to generally under-perform in differentiating deprived
(or poor) from the critically deprived (or ultra-poor) regions, as shown in the context of
Sub-Saharan Africa [53]. Researchers have also demonstrated the susceptibility of such
models to inherent noise in the data [54].

While our model leverages additional input data besides nighttime lights, more con-
certed research efforts are needed to comprehensively understand its performance and
generalizability. Satellite imagery, especially at the resolution analyzed in this work, might
not be able to distinguish between subtle nuances of urban and peri-urban areas (e.g. the
presence of slums or unauthorized settlements), as highlighted by [7] and, thus, would be
weak in distinguishing energy access in such microregions.

Recent works also highlight important concerns related to the presence of bias when
human developmental indicators, notably poverty and electrification are predicted using
nighttime lights [55-57]. We are currently working to understand the fairness aspects of
our model, so that our microestimates can be trusted and used by policy-makers.

Future directions While this paper focuses on Senegal, the proposed framework can also
be developed for other countries, by training the model using the EO data and energy
targets for that country, so that it can learn country-specific mappings and produce the
desired microestimates. With many geo-located household surveys being conducted regu-
larly and cheap availability of EO data, our framework has the potential to provide a cheap
and good approximation, and continuous monitoring for intercensal statistics at the mi-
croregional level and can supplement the surveying tasks for better tracking of SDG 7.
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